A wave-based computational method for free vibration and buckling analysis of rectangular Reddy nanoplates

Authors

  • Ali Zargaripoor School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Abstract:

In this paper, the wave propagation method is combined with nonlocal elasticity theory to analyze the buckling and free vibration of rectangular Reddy nanoplate. Wave propagation is one of the powerful methods for analyzing the vibration and buckling of structures. It is assumed that the plate has two opposite edges simply supported while the other two edges may be simply supported or clamped. It is the first time that the wave propagation method is used for thick nanoplates. In this study, firstly the matrices of propagation and reflection are derived. Then, these matrices are combined to provide an exact method for obtaining the natural frequencies and critical buckling loads which can be useful for future studies. It is observed that obtained results of the wave propagation method are in good agreement with the obtained values by literature. At the end the obtained results are presented to evaluate the influence of different parameters such as nonlocal parameter, aspect ratio and thickness to length ratio of nanoplate.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Size-dependent free vibration analysis of rectangular nanoplates with the consideration of surface effects using finite difference method

In this article, finite difference method (FDM) is used to study the size-dependent free vibration characteristics of rectangular nanoplates considering the surface stress effects. To include the surface effects in the equations, Gurtin-Murdoch continuum elasticity approach has been employed. The effects of surface properties including the surface elasticity, surface residual stress and surface...

full text

A Simple Finite Element Procedure for Free Vibration and Buckling Analysis of Cracked Beam-Like Structures

In this study, a novel and very simple finite element procedure is presented for free vibration and buckling analysis of slim beam-like structures damaged by edge cracks. A cracked region of a beam is modeled using a very short element with reduced second moment of area (I). For computing reduced I in a cracked region, the elementary theory of bending of beams and local flexibility approach are...

full text

Free in-plane vibration of heterogeneous nanoplates using Ritz method

In this paper, the Ritz method has been employed to analyze the free in-plane vibration of heterogeneous (non-uniform) rectangular nanoplates corresponding to Eringen’s nonlocal elasticity theory. The non-uniformity is taken into account using combinations of linear and quadratic forms in the thickness, material density and Young’s modulus. Two-dimensional boundary characteristic orthogonal pol...

full text

Free Vibration Analysis of Nanoplates Made of Functionally Graded Materials Based On Nonlocal Elasticity Theory Using Finite Element Method

In this paper, an analysis of free vibration in functionally graded nanoplate is presented. Third-order shear deformation plate theory is used to reach more accuracy in results. Small-scale effects are investigated using Eringen`s nonlocal theory. The governing equations of motion are obtained by Hamilton`s principle. It is assumed that the properties of nanoplates vary through their thicknesse...

full text

Free Vibration Analysis of SVC Systems Based on Reddy-Levinson Model Using DQM

In this study, the free vibration analysis of smart vibration control (SVC) systems based on Reddy – Levinson model and modified strain gradient theory is developed. This system consist of a micro beam at middle and two magneto-electro-elastic (MEE) composite micro beams at top and bottom which connected by enclosing elastic medium and simulated by Winkler and Pasternak foundation. The effects ...

full text

size-dependent free vibration analysis of rectangular nanoplates with the consideration of surface effects using finite difference method

in this article, finite difference method (fdm) is used to study the size-dependent free vibration characteristics of rectangular nanoplates considering the surface stress effects. to include the surface effects in the equations, gurtin-murdoch continuum elasticity approach has been employed. the effects of surface properties including the surface elasticity, surface residual stress and surface...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 51  issue 2

pages  253- 274

publication date 2020-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023